
Lab 4
More File Stuff

Think back to lab 1...

● Files were read-only

BUT NOW…

Lab 4: Two parts

1) Implement file-write
a) Actually mess around with the file system!

2) Make the filesystem crash-safe
a) Probably implement some form of logging

Prologue: Disk Struct Tour

Disk Layout

Boot Block:
Initialization code for bootloader

Super Block:
Describe how disk is formatted
(layout type, region size, etc)

Bitmap:
Track which disk blocks are used

Inodes:
Keep inode for each file
(file metadata)

Extents:
Where all the actual file data is
stored

dirent
“foo” 16

Summary

struct extent
struct extent

struct superblock - inc/fs.h

Parameters for xk’s file system superblock
 -> Much simpler than what a “real” filesystem like FFS or NTFS would require

// Disk layout:

// [boot block | super block | free bit map |

// inode file | data blocks]

//

// mkfs computes the super block and builds an initial file system. The

// super block describes the disk layout:

struct superblock {

 uint size; // Size of file system image (blocks)

 uint nblocks; // Number of data blocks

 uint bmapstart; // Block number of first free map block

 uint inodestart; // Block number of the start of inode file

};

struct dinode - inc/fs.h

You used “inodes” in lab 1 -- it’s the data about files.
On disk, we represent inodes as “dinodes” (disk inode), which include things like
padding and omit runtime data like locks that the in-memory-inode has

- dinodes are read from disk
- inodes are loaded from dinodes

struct extent - inc/extent.h

We need a way to keep track of where on disk files are stored.
For xk, we consider each file a contiguous region of blocks

Note, this is unlike FFS with indirect pages and references to individual blocks

Padding

Padding ensures there is always a whole number of dinodes on a block
(i.e. BLOCK_SIZE % sizeof(dinode) == 0, so no dinode is split between blocks)

Size = 2 + 2 + 4 + (4 + 4) + 46 = 62 + 2 = 64 (size of all fields plus struct padding - remember 351)

inodes and dinodes

● If you update dinode you’ll want to update inode too
○ locki will synchronize the inode with dinode

when inode->valid == 0
● If you add/delete fields in struct dinode, you’ll need

to adjust padding so that the whole size is a power
of 2

Part A: File Write

Write

● Modify writei in kernel/fs.c so that inodes can be used to write back to disk
● Use bread, bwrite, brelse

○ Note that you can’t read/write with the disk in quantities smaller than a block

● Look at readi as your example

● Also modify file_open to allow writing (and patch lab1 tests if you want to)

Append

● If you write at the end of a file, its size should grow.
● Somehow you’ll need extra space to write into

○ Option 1 (fancy): Update dinode to have multiple extents (out of space? Add a new extent)
○ Option 2 (easy): Just allocate 20 blocks per file when they’re created

■ This will require updating the “mkfs.c” file which builds the filesystem to allocate
extra space for files which already exist.

Create

Be able to create a new file when O_CREATE is passed to file_open

Multiple parts!

1. Create a new inode on disk
2. Update root directory to reference this new inode (nested dirs not required)

○ The directory is just a special file that contains a list of struct dirent, pointing to files
in the directory

3. Find extents for inode & update bitmap
4. Add the new inode to the inode region

○ Note: you’ll probably need to update mkfs.c to allocate extra space for the inode region.

// Directory is a file containing a sequence of dirent structures.

#define DIRSIZ 14

struct dirent {

 ushort inum;

 char name[DIRSIZ];

};

Delete

● unlink(char* path) system call
○ If path exists and no open references to the file, delete from the file system*

■ Effectively undoing steps from file creation
○ Otherwise, error

● Supporting file deletion -> inodefile can be fragmented
○ You will need to ensure file creation can fill holes in the inodefile

*unlink in Linux will delete the name from the file system, but keep the file object in memory until all references close - not necessary for our
purposes

https://linux.die.net/man/2/unlink

Lab4test_a
should now pass

Lab4test_b
should also pass if your
file concurrency is good

Part C: Crash Safety

Suppose we try to append...

Simple example: say we have “file.txt” which is 256 bytes long.
We try to append 50 bytes to this file.

We need two block writes
1) The inode region, updating the size of this file to 306 bytes
2) The actual file data on disk (the new 50 bytes)

But this entire operation is not atomic

- Invoke file_write
- Compute new file size
- Update size on disk (inode region)
- Update file contents in memory
- Write the new file contents to disk CRASH

When we reboot the system… We think “file.txt” is 306 bytes long, but the last
50 bytes are garbage, not what we tried to write!

The goal: make multi-block operations atomic

How?
Journaling.

The big idea: write changed blocks into a log rather than the final slot on disk.
Once all blocks are written to the log, copy them into the actual destination.

● If the system crashes before all blocks written, trash the log - fs consistent!
● If the system crashes after all blocks in log, redo the copying - fs consistent!

The protocol, in more detail

For any operation which must write multiple disk blocks atomically…

1) Clear out any data currently in the log
2) Write new blocks into the log, rather than target place. Track what target is.
3) Once all blocks are in the log, mark the log as “committed”
4) Copy files from the log to where they should be

On system boot, check the log. If not committed, do nothing. If so, redo the
copy (copy is idempotent)

The Log

Step 1: “log_begin()”

The Disk
(Main Storage)

Make sure the log is cleared

The Log

Step 2: “bwrite(data block 1)”

Data
Block 1

The Disk
(Main Storage)

Write into the log, rather than the place in the
inode/extents region we want it to go

The Log

Step 3: “bwrite(data block 2)”

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Write into the log, rather than the place in the
inode/extents region we want it to go

The Log

Step 4: “log_commit()” [1]

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Mark the log as “committed”

The Log

Step 5: “log_commit()” [2]

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Data
Block 1

Copy the first block from log onto disk

The Log

Step 6: “log_commit()” [3]

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Data
Block 1

Copy the second block from log onto disk

Data
Block 2

The Log

Done!

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Data
Block 1

We have both data blocks 1 and 2 on disk -
everything was successful.

For efficiency, we can zero out the commit
flag so the system doesn’t try to redo this

Data
Block 2

The Log

Example: Step 3: “bwrite(data block 2) CRASH

Data
Block 1

The Disk
(Main Storage)

On reboot…
There’s no commit in the log, so we should
not copy anything to the disk

The Log

Example: Step 6: “log_commit()” [3] CRASH

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Data
Block 1

On reboot, we see that there is a commit flag

We can then copy block 1 and 2 to disk --
even though DB1 was already copied over,
overwriting it with the same data is fine

Data
Block 2

Where to Log?

It’s just blocks on disk, so you can put it anywhere you want (within reason)

After-bitmap, before-inodes is a pretty good place
You’ll need to update the superblock struct and mkfs.c

Context (lab 1: File API. lab 4: Inode API)

Questions?

